

Overview of the UNRBA Modeling to Support the Re-examination

Purpose of the Modeling Effort

- Re-examine Stage II of the Falls Lake Nutrient Management Strategy
- Better understand sources of nutrient loading to Falls Lake
- Evaluate nutrient management options to improve water quality and continue to protect designated uses
- Consider cost and technical feasibility in the revised strategy
- Work with stakeholders throughout the process
 - Hear concerns and address issues
 - Build a workable strategy with buy-in across organizations

Overview of Four UNRBA Models

Watershed loading model (WARMF)

 WARMF: Watershed Analysis Risk Management Framework

Two lake water quality response models

- 2. Segment-based, less complex model (WARMF Lake)
- Grid-based, hydrodynamic model (Environmental Fluid Dynamics Code, EFDC)

Statistical lake model (water quality and designated uses)

4. Falls Lake Statistical Model

Scale of the WARMF Watershed Model: The land and waters draining to Falls Lake

1. Watershed Loading Model

Watershed Analysis Risk Management Framework (WARMF)

- Predict flow, nutrient, and carbon loading to Falls Lake
- Based on weather, land use, wastewater treatment, nutrient application, atmospheric deposition, etc.
- Calibrate to data collected by UNRBA, DWR, and others (2015-2018)
- Evaluate how nutrient management scenarios
 affect loading to the lake (changing land uses or
 nutrient application rates, best management practices, etc.)

The State also developed a WARMF model of the Falls Lake watershed. It was not used to set loading targets, but it was used to account for controllable/uncontrollable sources in the required reduction amounts. It did not link directly to the State's EFDC lake model.

Scale of the WARMF Lake Model:

Less complex, segment-based lake model

2. Lake Model: WARMF

- Link to WARMF watershed loading model
- Calibrate to Falls Lake data collected by DWR and others (2015-2018)
- Predict water quality concentrations in each segment (nutrients, carbon, and chlorophyll-a)
- Evaluate how nutrient management scenarios affect water quality (chlorophyll-a) in Falls Lake
- Provide faster scenario evaluations compared to EFDC; use for screening scenarios

Scale of the EFDC Lake Model:

Grid-based lake model of Falls Lake and Beaverdam Impoundment

3. Lake Model: EFDC

Environmental Fluid Dynamic Code

- Complex 3-D hydrodynamic model of water movement and water quality through hundreds of model 'cells'
- Link to WARMF loading model and calibrate to Falls Lake data collected by DWR and others (2015-2018)
- Evaluate how nutrient management scenarios affect water quality (nutrient, carbon, chlorophyll-a) at specific locations
- Include simulation of nutrients stored in lake sediments, including long-term depletions
- Use to support evaluation of regulatory options outlined in the UNRBA Outline of Alternative Regulatory Strategies (B&T 2020,draft: e.g., variance, site specific standard)

The State developed an EFDC model of Falls Lake which was used to develop the load reduction targets in the current rules.

4. Falls Lake Statistical Model

- Segment-based model that incorporates many different types of information (data, existing empirical models, new models, literature, expert opinion)
- Predict water quality concentrations in each segment (nutrients, carbon, and chlorophyll-a)
- Predicts the likelihood of meeting water quality standards
- Links water quality to designated uses
- Supports evaluation of potential regulatory options (site-specific criteria, sub-classification use attainability analyses, variance)
- Supports cost-benefit, risk assessment, and uncertainty analyses to support decision making
- Used to evaluate how nutrient management scenarios affect water quality and designated uses in Falls Lake (link to WARMF loading model or run simple scenarios)

Potential Endpoints for FL Statistical Model

Designated Uses

- Safe drinking water
 - Taste, Odor
 - DBPs
 - TOC removal
- Aquatic Life
 - Dissolved Oxygen
 - Fish Kills
- Recreation
 - Fishing
 - Swimming
- Flood control

Water Quality Standards

- Dissolved oxygen
- pH
- Chlorophyll-a

The statistical modeling team will be seeking input from the Path Forward Committee and the legal team on evaluation metrics for these endpoints.