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Executive Summary 
Jordan Lake is a major water supply, flood control, and recreational reservoir located in Chatham 

County, North Carolina.  The reservoir is highly eutrophic based on algal (i.e., chlorophyll a) 

levels that regularly exceed the state criterion of 40 μg/l.  The lake can be separated 

longitudinally into 4 segments with unique water quality, based on constrictions due to road 

causeways and natural features.  The most upstream (northern) segment receives flows and 

nutrient loads from watersheds that include the cities of Durham and Chapel Hill.  The most 

downstream (southern) segment receives input from the Haw River watershed, which includes 

the city of Greensboro.  Chlorophyll a levels are particularly elevated where these major 

tributaries enter the reservoir. 

There is a general consensus in the scientific and management community that reducing 

watershed nutrient (nitrogen and/or phosphorus) loads will improve water quality by reducing 

algal levels over time.  However, it is also acknowledged in the scientific literature that internal 

loading from reservoir bottom sediments can continue to supply nutrients for algal growth even 

after watershed nutrient loading has been reduced.  This phenomenon has been studied in some 

natural lakes, but has received less attention in man-made reservoirs.  Furthermore, the degree of 

internal nutrient loading is likely to vary substantially among different lakes and reservoirs, 

considering their unique nutrient loading patterns, sediment characteristics, geometry, and 

climate. 

In this study, we develop and apply a water quality model to infer and simulate reservoir nutrient 

(total phosphorus and total nitrogen) dynamics over a multi-decadal time period (1983-2018).  

We use a parsimonious mechanistic formulation based on mass balances for the sediments and 

waters of the four main lake sections.  The mechanistic formulation builds on previous modeling 

studies exploring long-term phosphorus dynamics in natural lakes (Chapra & Canale, 1991; 

Jensen et al., 2006).  The model is calibrated in a Bayesian framework where prior knowledge of 

biophysical rates from relevant scientific literature is systematically updated based on the long-

term calibration datasets for nitrogen and phosphorus in Jordan Lake.  Furthermore, empirical 

relationships are used to relate seasonal nitrogen and phosphorus levels to chlorophyll a.  The 

combined calibrated model is then used to make probabilistic scenario predictions of how the 

reservoir’s internal nutrient cycling and water quality will respond to potential future reductions 

in watershed nitrogen and phosphorus loading over time. 

Modeling results explain 58% and 41% of monthly phosphorus and nitrogen variability, 

respectively. This level of performance compares well with previous water quality modeling 

studies (Arhonditsis and Brett, 2004), and higher performance would not necessarily be expected 

given the stochasticity in sampling results within individual months and reservoir segments. 

Overall, these results suggest the model is well formulated to address major drivers of nutrient 

variability. 
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Phosphorus modeling results indicate that there has been a gradual (11%) decrease in phosphorus 

storage in the reservoir sediment from 1992 till 2018.  Phosphorus storage increased in the first 

decade of the period of record (1983-1992) by 5.5%; a period when watershed nutrient loading 

was particularly elevated.  In the first decade, internal phosphorus loading accounted for just 

35.7% of total (internal plus watershed) nutrient loading to the water column.  After 1992, 

internal phosphorus storage declines at a slower rate than watershed loading. As a result of these 

different reduction rates, in the last decade (2009-2018), internal phosphorus loading accounted 

for 51% of total loading.  Here, total loads do not include the portion of phosphorus load lost in 

the most upstream portions of the reservoir due to rapid settling and burial of incoming 

particulate material, which is estimated to be about 46%.  Overall, these results suggest that 

internal nutrient loading currently plays a major role in reservoir eutrophication dynamics and 

will mute the impact of short-term nutrient watershed loading reductions.   

Nitrogen modeling results, contrary to phosphorus, demonstrate a 30% increase in nitrogen 

storage in the reservoir sediment during the study period. In the last decade (2009-2018) average 

external loading was 7.4% lower than in the first decade (1983-1992), but internal loading 

increased by 20% during the same interval. Internal nitrogen loading accounted for 71% of total 

nitrogen loading to the water column from 2009 to 2018, compared to 65% from 1983 to 1992. 

These total loads do not account for nitrogen lost in upstream portions of the reservoir due to 

rapid settling of particulate material, which is estimated to be up to 24% of the external load. 

These results suggest internal nitrogen loading is an important contributor to the reservoir, and 

will mute the impacts of short-term watershed nutrient loading reductions.  

The empirical (multiple linear regression) model linking nutrients and chlorophyll explains about 

60% of the variability in the chlorophyll data. This performance is satisfactory, considering that 

the model operates at daily scales, whereas similar models applied at much coarser scales have 

shown comparable performances (e.g., Dolman and Wiedner, 2015).  Calibrated model 

coefficients generally indicate higher algal concentrations when nutrients (nitrogen and 

phosphorus) and temperature are high and when flushing is low. The influence of nutrient 

concentrations appears to be highest in summer (June-September), when water residence time 

(the inverse of flushing rate) and temperature are high and thus less likely to limit algal growth. 

The influence of flushing, on the other hand, seems to be highest in winter, when watershed 

inflows are highest and most variable. The chlorophyll model also provides information on rnp, 

the total nitrogen to total phosphorus ratio (TN:TP) at which algae switch between nitrogen and 

phosphorus limitation. We find that, on average, rnp ≈ 16 provides the best fit to the data. This 

value is substantially higher than the Redfield ratio of 7.2, which indicates that a portion of the 

nitrogen pool is not easily usable by the algae to foster their growth. Given that observed TN:TP 

in the reservoir typically ranges from 5 to 30, rnp ≈ 16 suggests that nitrogen and phosphorus are 

limiting a similar fraction of the time. Interestingly, results also show phosphorus is more 

limiting than nitrogen in the summer. In the upper (northern) portion of the lake, about 90% of 

sampled summer days show phosphorus limitation, though the frequency of phosphorus 
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limitation declines in lower sections of the reservoir. In general, the chlorophyll model highlights 

the importance of reducing both nitrogen and phosphorus in order to reduce algal biomass. 

The combined models (nitrogen, phosphorus, chlorophyll) are applied to simulate the reservoir’s 

likely response to potential changes in watershed nutrient loading over time.  Because internal 

nutrient storage and loading may respond slowly to changes in external inputs, we perform these 

simulations over a 4-decade period.  In these simulations, we sample from the variability in 

historical hydrologic conditions and from the uncertainties in the model itself.  Nutrient load 

reductions are made relative to a 1999-2018 baseline level for hydrology and nonpoint source 

loading, and present-day point source (wastewater treatment plant) loading rates. If nutrient 

loading persists at current levels, our results indicate that lake-wide concentrations will continue 

to change modestly over the next 20 years (+9% w.r.t. 948 μg/l for nitrogen, -5% w.r.t. 59 μg/l 

for phosphorus, and -2% w.r.t. 30 μg/l for chlorophyll) due to gradual changes in sediment 

nutrient storage. Results indicate that a 50% external nutrient loading reduction will produce 

approximately 9% and 5% reductions in lake-wide phosphorus and nitrogen concentrations 

(respectively) after one year, 25% and 12% after 10 years, and 38% and 17% after 40 years. 

Further, for the highly eutrophic northern section of the reservoir (above Farrington Road), 

results suggest it will take about 30 years for a 75% reduction in nutrient loading to reduce the 

probability of exceeding 40 μg/l chlorophyll to 20% (as an April-October mean, for a given 

year).  For the same scenario and time horizon, there is about 80% probability that 

concentrations in lower portions of the lake will average below 25 μg/l.  When analyzing loading 

changes to different arms of the lake (Haw River vs. New Hope Creek), we find that nutrient 

loading reductions to the New Hope Arm of the lake will be most impactful in improving water 

quality. For instance, 2%, 10%, and 11% reductions in lake-wide mean chlorophyll concentration 

are expected after 10 years if loads are reduced by 50% to the Haw River Arm, New Hope Arm, 

and entire lake, respectively. 

 

  



Jordan Lake Reservoir Model  December 2019 
 

6 
 

1. Methods 

Study Area 

This study focuses on Jordan Lake and its tributaries, including Morgan Creek, New Hope 

Creek, Northeast Creek, White Oak Creek, and The Haw River. For modeling and analysis 

purposes, Jordan Lake is divided into four segments based on the locations of flow constrictions, 

including the Highway 64 causeway, Farrington Road causeway, and the narrows located 

northeast of the dam (Figure 1). The geometry of lake segments varies substantially, with 

segment 1 being relatively shallow, and segment 4 having the smallest surface area but deepest 

mean depth (Table 1). 

Table 1: Jordan Lake Dimensions at USACE Normal Pool Depth of 65.8 m (216 ft) above sea 

level. Segments are numbered from north to south.  

Portion of Lake 
Normal Pool 

Area: km2 

Normal Pool Volume: 

km3 

Normal Pool Mean Depth: 

m 

whole lake 56.44 0.2653 4.70 

segment 1 13.97 0.0361 2.59 

segment 2 14.43 0.0639 4.43 

segment 3 20.25 0.1086 5.36 

segment 4 7.78 0.0567 7.28 
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Figure 1: Map of Jordan Lake displaying the four segments and where they are separated. Black 

diamonds indicate in-lake sampling points used in this study. Blue squares represent watershed 

load monitoring sites.  
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Data 

We compile information from multiple institutions to provide model inputs and calibration data. 

Reservoir tributary flow data (Table 2, Figure 2) are retrieved from USGS (2019). Nutrient 

concentration data for the lake and gauged tributaries are compiled from the Water Quality Portal 

(2019), which provides a compilation of USGS and NC DEQ sampling data. Water quality 

monitoring sites corresponding to USGS flow gauging sites are shown in Table 2 and Figure 2.  

Water quality monitoring sites located in the middle of lake segments (used for model 

calibration) are shown in Table 3 and Figure 1. We developed nutrient loading estimates for 

wastewater treatment plants from self-reported nutrient concentration and flow data (NCDEQ, 

Personal Communication, 2019).  

Table 2: Watershed load monitoring sites directly upstream of Jordan Lake, along with the 

associated reservoir segment. 

Flow Site ID 
Water Quality 

Site ID 
Stream 

Watershed 

Area (km2) 

Years 

Available 

Reservoir 

Segment 

USGS-02096960 B2100000 Haw River 3302 1980-2018 4 

USGS-02097517 B3900000 Morgan Creek 106 1983-2018 1 

USGS-02097314 B3040000 New Hope Creek 197 1983-2018 1 

USGS-0209741955 B3660000 Northeast Creek 55 1983-2018 1 

USGS-0209782609 0209782609 White Oak Creek 31 2000-2018 2 

 

Table 3: Lake water quality sampling locations used for analysis. 

segment 1 segment 2 segment 3 segment 4 

B3680000 USGS-0209771550 B4010000 B2453000 

B3680020 USGS-0209781125 B4010020 B2453010 

B3950000 B3967000 CPF0880A B2453020 

B3950020 B3967020 CPF0880Aa CPF055D 

CPF081A1C B4030000 CPF0880Ab CPF055E 

CPF086C CPF087B CPF0880Ac  
CPFMC03 CPF087B3   
CPFMC04    
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Figure 2: Map of Jordan Lake watersheds by color, with ungauged tributaries in hatched zones. 

Blue squares represent load monitoring sites. 

We obtained reservoir level and dam release data from the USACE (2019).  Daily air 

temperature, precipitation, and open-water evaporation data are from stations at Raleigh-Durham 

Airport (ID: KRDU), and Chapel Hill (ID: 311677). Additionally, daily air temperature data 

come from stations at Raleigh St. University (ID: 317079), Raleigh Apartments (ID: 317069, 

NCCO, 2019). Data from Chapel Hill, Raleigh Apartments, and Raleigh St. University are 

averaged to create a more complete and spatially representative record of air temperature over 

the lake.  

Reservoir stage-storage relationships (Figure 3) are based on digital elevation data.  We gathered 

elevation data for above the normal pool elevation from the USGS National Elevation Dataset 

(USGS, 2019) at approximately 30-m resolution. Reservoir bathymetry for below the normal 

pool comes from a recent University of North Carolina bathymetry survey (A. Rodriguez, 

personal communication, May 2019) at approximately 25-m resolution.   
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Figure 3: Stage-area (top) and stage-volume (bottom) relationships for the four segments of 

Jordan Lake. 

Watershed Load Estimation 

For each tributary monitoring station, the USGS Weighted Regressions in Time, Discharge, and 

Season (WRTDS) program (Hirsch & De Cicco 2015) is used to compute nutrient concentration 

and load on a daily timescale. WRTDS results are aggregated by lake segment and month for 

input to the reservoir water quality model. Loadings from wastewater treatment plants outside of 

the gauged area are added directly to the WRTDS segment loading estimates, assuming 

negligible instream nutrient removal due to their close proximity to the lake. Nonpoint source 

loading from ungauged watershed areas (Figure 2) are estimated using areal loading rates (kg 

km-2 month-1) derived from White Oak Creek, as it is the only gauged watershed without WWTP 

loadings. Missing monthly loads for White Oak Creek and Northeast Creek (due to gaps in the 

monitoring record) are filled using linear regressions developed between these sites and gauged 

flow in Northeast Creek and Morgan Creek, respectively.  
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Reservoir Routing 

A routing model is needed to estimate flows between the four reservoir segments. Routing is 

performed at a monthly time step, considering flow balances among tributary inflows, over-lake 

evaporation and precipitation, reservoir discharge, and changes in reservoir storage.  Flows from 

ungauged areas, representing 14.5% of the Jordan Lake watershed, are estimated using drainage 

area ratios with nearby gauged streams.  The overall reservoir flow balance is formulated as:    

𝑄𝑜𝑢𝑡 = 𝑄𝑡 + 𝑃 − 𝐸 + Δ𝑉 +  𝜀  Eqn 1. 

where 𝑄𝑜𝑢𝑡 is reservoir outflow, 𝑄𝑡 is the area-adjusted tributary inflow, E over-lake 

evaporation, P is over-lake precipitation, and Δ𝑉 is the change in lake storage.  All of these 

variables are known, such that the error term (ε) results from inaccuracies in the measured 

values.  Errors are generally small (averaging 3.8 m3/s as absolute values, compared to an 

average reservoir inflow of 45 m3/s).  As tributary gauging is expected to be the most substantial 

source of uncertainty in Eqn 1, tributary inflows are adjusted up or down slightly to remove the 

error and close the flow balance.   

Flows between segments are determined by applying Eqn 1 for each segment with additional 

term, 𝑄𝑢, to account for flow from the upstream segment.  Eqn 1 is then solved for segment 

outflow, 𝑄𝑜𝑢𝑡, which now represents the flow to the next segment. We note that segment flows 

are sometimes negative, particularly when there is a large inflow from the Haw River that fills 

the reservoir from its downstream end. 

Reservoir Temperature Estimation 

To provide continuous temperature inputs to the water quality model, daily water temperature is 

reconstructed using a linear regression between observations of air temperature (available daily) 

and water temperature (available more sporadically). Daily air temperature readings are used to 

create two-week moving averages to represent the delayed reaction of a large body of water. The 

linear regression is formed between these moving averages and water temperature 

measurements. For this purpose, the water temperature data used for the regression were 

collected at a depth of 4 meters or greater to better represent the temperature effects occurring 

deeper in the lake, as the temperature data are used to influence mass transfer rates between the 

sediment and water layers.  

Nutrient Model Formulation 

The mechanistic nutrient model is developed from 8 differential equations, representing nutrient 

mass balances in the water column and sediment layer of each of the 4 reservoir segments 

(Figure 4).  These equations are comparable to those developed by Chapra (1990) and Jensen et 

al. (2006) for studying long-term phosphorus dynamics, though these previous studies 

represented natural lakes as a single well-mixed reactor (rather than multiple segments). The 

mass balance differential equation for nutrients in the water column is as follows: 
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𝑑𝑀𝑖

𝑑𝑡
= (𝑆𝑖 ∗ 𝑅𝑠)𝜃𝑅

𝑇−20 + (𝑄𝑖𝑛𝑖 ∗ 𝐶𝑖𝑛𝑖)(1 − 𝜓) − 𝑀𝑖 (𝑘 +
𝑣∗𝐴𝑖

𝑉𝑖
) 𝜃𝑉

𝑇−20 + 𝑄𝑖−1,𝑖 ∗
𝑀𝑖−1

𝑉𝑖−1
−

𝑄𝑖,𝑖+1 ∗
𝑀𝑖

𝑉𝑖
 Eqn. 2.1 

In the case with reversed flow (south to north) the last two terms are replaced with the following: 

𝑄𝑖+1,𝑖 ∗
𝑀𝑖+1

𝑉𝑖+1
− 𝑄𝑖,𝑖−1 ∗

𝑀𝑖

𝑉𝑖
 Eqn. 2.2 

The mass balance differential equation for nutrients in the sediment layer is as follows: 

𝑑𝑆𝑖

𝑑𝑡
= (𝑀𝑖 ∗ (𝐾𝑠 +

𝑉𝑠∗𝐴𝑖

𝑉𝑖
)) (𝜃𝑉

𝑇−20) − (𝑆𝑖 ∗ 𝑅𝑠)(𝜃𝑅
𝑇−20) − (𝑆𝑖 ∗ 𝐵𝑟) Eqn. 3 

The terms in the preceding equations are described as follows: 

Mi = Mass of phosphorus in segment i water layer. [kg] 

Si = Mass of phosphorus in segment i sediment layer. [kg] 

v = Transfer rate of nutrients to the sediment layer, as an effective settling velocity. [m•month-1] 

k = Transfer rate of nutrients to the sediment layer, as a first order removal rate. [month-1] 

ψ = Watershed nutrient load adjustment factor. [n/a] 

R = Recycling rate of nutrients from the sediment back into the water layer. [month-1] 

B = Removal rate from the sediment to permanent burial and/or denitrification. [month-1] 

𝜃𝑣 = Temperature adjustment parameter for the transfer of nutrients from water column to 

sediments. [n/a] 

𝜃𝑅 = Temperature adjustment parameter for the sediment nutrient recycling rate. [n/a] 

Ai = Area of segment i water layer at the surface (varies with time). [106 m2] 

Vi = Volume of segment i water layer (varies with time). [106 m3] 

Qini = Watershed inflow to segment i (varies with time). [106 m3
•month-1] 

Cini = Concentration of nutrient in watershed inflow (varies with time) [mg•m-3] 

𝑄𝑖−1,𝑖 = Flow from upstream segment to segment i (varies with time) [106 m3
•month-1] 

𝑄𝑖+1,𝑖 = Flow from segment i to downstream segment (varies with time) [106 m3
•month-1] 

These differential equations were solved numerically on a monthly time scale using the ODIN 

package (FitzJohn, 2019) in R (R Core Team, 2018).  The model was run from 1983 through the 

end of 2018. 
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Figure 4: Diagram of the nutrient model used to track flow through Jordan Lake. 

During the months of May through September, segments 2-4 demonstrate consistent 

stratification (R. Luttich, personal communication, 2019). To account for such stratification, the 

model output is adjusted to predict surface concentration (upper 3 m of water column). Surface 

concentration is calculated from the predicted overall water-column nutrient mass adjusted for 

the observed difference between bottom and surface water column concentrations:   

𝐶𝑠𝑢𝑟 = 𝑀𝑖[𝑉𝑖 + 𝑉𝑖,𝑏(𝑅𝑖,𝑏:𝑠 − 1)]
−1

 Eqn. 4 

where 𝑉𝑖,𝑏 is the volume of segment i below a depth of 3 meters, 𝑅𝑖,𝑏:𝑠 is the nutrient 

concentration ratio for observations below/above 3 m, for months where consistent differences 

were observed in the historical data (Mar-Sept for TP, Apr-Sept for TN). These ratios are 

aggregated as medians to avoid the influence of extreme values.  Also, because of the paucity of 

paired bottom/surface observations, we grouped months together based on an inspection of the 

typical seasonality of these ratios, in order to achieve more robust and realistic results (Table 4).  

We note that segment 1 is shallow and does not persistently stratify, so that no adjustment was 

required. 
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Table 4: Ratios of bottom to surface nutrient concentration, 𝑅𝑖,𝑏:𝑠, by month  

 segment 2 ratios segment 3 ratios segment 4 ratios 

Month TP TN TP TN TP TN 

3 1.1  1.6  1.1  

4 1.1 1.0 1.6 1.4 1.1 1.2 

5 1.1 1.0 1.6 1.4 1.1 1.2 

6 1.1 1.0 1.6 2.2 1.1 1.7 

7 1.2 1.0 1.6 2.2 1.7 1.7 

8 1.2 1.0 1.6 2.2 1.7 1.7 

9 1.2 1.0 1.6 1.4 1.7 1.2 

 

Nutrient Model Calibration 

The mechanistic model is calibrated in a Bayesian framework to produce probabilistic estimates 

of key model parameters. Calibration is achieved by updating prior rate and nutrient information 

from previous research using the observed surface concentration data gathered from Jordan Lake 

over the past 30 years. The parameters calibrated in the model are listed below in Table 5. 

Bayesian model calibration is implemented using an adaptive Markov Chain Monte-Carlo 

approach as implemented in the “adaptMCMC” package in R (Scheidegger 2018). The model is 

calibrated in a log10 transformed scale to help account for the right skew typical of pollutant 

concentration data (Ott, 1990). Parameters calibrated with this approach are centered at their 

optimal value and additionally incorporate a measure of their uncertainty.  

Prior Parameter Information 

Before model calibration, prior distributions for model parameters are formulated from existing 

literature and knowledge of the system. Most priors are Gaussian (normal) and truncated at zero 

to avoid unrealistic negative values (Table 5).  Priors for nutrient removal rates are developed 

based on previous literature exploring internal phosphorus cycling in lakes. Effective phosphorus 

settling rates have been estimated to be within 1 to 4 m/mo (Chapra, 1975; Chapra & Canale, 

1981; Nürnberg, 1984; Jensen et al., 2006).  Converting these settling rates to 1st-order removal 

rates based on typical lake depths indicates a range of 0.1 to 0.7 mo-1.  Because we include both 

options within the model, our prior means are half of the center of these ranges: 1.3 m/mo and 

0.20 mo-1 for v and k, respectively.  Prior standard deviations are set to 1.4 m/mo and 0.26 mo-1, 

respectively, so that that the upper 0.975 quantile of the prior distributions align with the upper 

end of the literature ranges.  In addition, the load adjustment factor ψ is assigned a mean of 0.1 

and standard deviation of 0.1, considering the potential for bias in loading estimates (Hirsch et 

al., 2014), and the potential for removal of particulate P in the upstream reaches of the reservoir 

(Duan et al., 2014; River & Richardson, 2018). 

For eutrophic lakes, reported phosphorus fluxes typically range from around 0.2 to 3.0 g/m2/yr 

(Nürnberg, 1988; Chapra & Canale, 1991; Moore et al., 1998; Welch & Jacoby, 2001; Haggard 
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et al., 2005; Nürnberg, 2009; Matisoff et al., 2016). Converting these fluxes to release rates 

requires information on sediment phosphorus content, reported at typical ranges of 20 to 80 g/m2 

for eutrophic lakes (Larsen et al., 1981; James et al., 2005; Jensen et al., 2006). Based on these 

values, the prior recycle rate is determined to have a mean of 0.0030 mo-1 with standard 

deviation of 0.0018 mo-1. There is little prior information available for the phosphorus burial 

rate, but it is expected to be smaller than the recycle rate, as it is not included in all models 

(Jensen et al., 2006).  Here, we use a prior with mean and standard deviation of 0.001 mo-1, 

based loosely on Chapra & Canale (1991). 

Table 5: Priors Applied to Parameters Subject to Calibration.  

Parameter Distribution Lower Upper Description Units 

Phosphorus Model Priors 

ψ N(0.1,0.1) -1 1 watershed load reduction factor n/a 

R N(0.003,.0018) 0 Inf 1st order sediment recycling rate mo-1 

B N(0.001,0.001) 0 Inf 1st order burial rate mo-1 

Sinit N(0.0456,0.025) 0 Inf initial sediment concentration kg•m-2 

Nitrogen Model Priors 

ψ N(0.05,0.05) -1 1 watershed load reduction factor n/a 

R N(0.033,.017) 0 Inf 1st order sediment recycling rate mo-1 

B N(0.15,0.1) 0 Inf 1st order burial/denitrification rate mo-1 

Sinit N(.25,0.075) 0 Inf initial sediment concentration kg•m-2 

General Priors 

v N(1.3,1.4) 0 Inf 
effective settling velocity to 

sediment 

m•mo-

1 

k N(0.2,0.26) 0 Inf 1st order transfer rate to sediment mo-1 

θv N(1.05,0.03) 1 Inf 
settling/transfer temperature 

adjustment 
n/a 

θR N(1.05,0.03) 1 Inf recycling temperature adjustment n/a 
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Prior information for nitrogen water column removal rates is less available than for phosphorus.  

However, because nitrogen removal from the water column is mediated by largely the same 

processes to phosphorus removal (e.g., phytoplankton growth, consumption, settling of detritus), 

we apply the same priors for v and k used in the phosphorus model.  We note that 1.1 m/mo has 

been reported as an average apparent settling rate for reservoirs (Harrison et al., 2009) and is 

generally consistent with our prior, though it is a net rate reflecting both nitrogen settling and 

recycling. For the load adjustment factor, we assign a prior mean and standard deviation of 0.05 

to account for potential settling of particulate organic matter in the upper reaches of the reservoir 

as well as potential biases in load estimation. This prior is notably lower than for phosphorus, as 

nitrogen does not adsorb to settling inorganic particulate matter. 

Due to denitrification, many long-term studies assume little or no buildup of nitrogen within the 

sediment layer over time (e.g., Jensen, 1992; David et al., 2006). Lake and reservoir 

denitrification rate estimates tend to vary widely, from about 10 to 800 g/m2/yr in literature 

(Windolf et al., 1996; Tomaszek & Czerwieniec, 2000; David et al., 2006). Based on typical 

areal TN concentrations from 100 to 400 g/m2 (Lane & Koelzer, 1943; Tomaszek & 

Czerwieniec, 2000; Fisher et al., 2001; James et al., 2005), these values suggest a denitrification 

rate with a prior mean of 0.15 mo-1 with standard deviation of 0.10 mo-1. In the nitrogen model, 

this denitrification rate replaces the phosphorus burial rate and is mathematically equivalent to it.  

As an alternative to denitrification, sediment nitrogen may also be returned to the water column 

as ammonia (Di Toro, 2001). Reported summer ammonia flux rates typically vary from 5-25 

g/m2/yr for hypoxic summer conditions (Graetz et al., 1973; Beutel, 2001). On a yearly basis, 

these values suggest a recycle rate prior with a mean of 0.033 mo-1 with standard deviation of 

0.017 mo-1.   

Chlorophyll Modeling 

In-lake concentrations of total nutrients (TN and TP) are used to predict chlorophyll via 

regression. The model is composed of three terms that are linearly combined to predict 

chlorophyll concentration (c), namely, the nutrient concentration term, the flushing rate (F, the 

inverse of water residence time) and water temperature (T): 

0log( ) log min , log( ) log( )np f t

np

TN
c TP F T

r
   

  
= + + +  

  
  

, Eqn. 5 

where  ’s and rnp are parameters to be calibrated using ‘penalized least squared’ optimization 

implemented using the ‘penalized’ package (Goeman, 2010). This approach is equivalent to 

maximum likelihood estimation with np  and t  being constrained to be nonnegative, as 

negative coefficients for nutrients and temperature would be physically implausible.  

The nutrient concentration term of the chlorophyll model is based on the ‘equivalent nutrient 

approach’ proposed by Dolman and Wiedner (2015). This approach represents chlorophyll as 

being controlled by the nutrient in shortest supply, either TN or TP. To account for the fact that 

algae require more TN than TP to grow, TN is divided by rnp, a calibration parameter 



Jordan Lake Reservoir Model  December 2019 
 

17 
 

representing the TN:TP at which TN and TP are equally limiting. rnp is constrained between 5 

and 30, a range consistent with the observed TN:TP in Jordan Lake and with previous literature 

(Dolman and Wiedner 2015).  

 

Calibration is conducted using daily input and output data derived from lacustrine measurements, 

except for the flushing rate that was derived from monthly outputs of the routing model (see 

Reservoir Routing section). Each predictor term as well as the dependent variable are log10 

transformed, a solution often adopted in regression modeling of chlorophyll to mitigate the 

impact of extremely high values (Dolman and Wiedner 2015; Filstrup and Downing, 2017; 

Prairie et al. 1989). Additionally, the most extreme outliers are removed from model calibration 

to avoid corrupting parameter estimates. Overall, 12 (out of 1020) daily data points are dropped 

because (transformed) chlorophyll, TN or TP were above their upper quartile plus twice the 

interquartile range or below their lower quartile minus twice the interquartile range.    

The model is allowed to calibrate different parameters according to the season and segment, as 

preliminary analyses show non-stationarity in the relationship between predictors and dependent 

variable based on the time of the year and the portion of the lake.  

Scenario Analysis 

The three developed models (for TP, TN and chlorophyll) are combined to predict future water 

column and sediment concentrations at monthly scales. Specifically, the combined model is used 

to simulate the reservoir’s response in terms of TP, TN, and chlorophyll concentrations to past 

and future nutrient loading. While model calibration is performed over the monitoring period of 

1983-2018, simulations for scenario analysis are conducted over the 2019-2058 period. To 

realistically account for seasonality in hydrology over this latter period, for each simulation, an 

input time series is created by randomly rearranging the historical (1999-2018) inputs by year. 

This historical period is chosen as representative because around the late 1990s nutrient 

concentrations in the lake became approximately stationary.  

To account for two major and sudden reductions in nitrogen loading due to improvements in 

sewage treatment, we adjust the concentration of segment 1 riverine inputs used for scenario 

analysis. Specifically, during preliminary data analysis, we find that, after December 2004, 

Northeast Creek average TN loading decreases by 58%, whereas after March 2010, Morgan 

Creek average TN loading decreases by 28%. Therefore, for scenario analysis, riverine inputs 

from 1999 to 2010 are reduced accordingly, in order to not project forward loading conditions 

that irreversibly changed.     

The main nutrient loading scenarios are calculated by varying tributary concentrations from -

100% to +100% of historical values. Ancillary scenarios are also computed by varying of ±50% 

loadings from either the New Hope Arm or the Haw River Arm. To account for model parameter 

uncertainty for a given loading scenario, each model is run 1000 times, each time with a different 

sample from the calibrated posterior parameter distribution. Additionally, for each simulation, 

realizations of the residual error distributions are added to TP, TN, and chlorophyll to account 
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for model structure and observation uncertainty. Propagating parameter and residual 

uncertainties through the three models is paramount to quantify the probability of exceeding a 

given concentration in the future.  
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2. Results 

Total Phosphorus Model 

Overall, 58% of the variability of the data is explained by the model (Figure 5). The coefficient 

of determination (R2 or fraction of variability in the data explained by the model) is equal to 

0.42, 0.25, 0.30, and 0.23 for segments 1, 2, 3, and 4, respectively. The TP model effectively 

captures the higher levels of recorded phosphorus from 1983 to 1990, and the generally lower TP 

concentrations thereafter (Figure 6). In addition, the model captures intra-annual variability, with 

high concentrations generally occurring in the fall-winter.  

 

 

 

Figure 5: In-lake surface TP observations versus predictions (R2 = 0.58). 
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Figure 6: Monthly time series showing the TP model predictions along with monthly 

observations for segment 1 (above Farrington Rd). 

Posterior distributions generally lie within the prior distributions suggested by previous literature 

(Figure 7). Posterior distributions are generally narrower than prior distributions, indicating 

substantial reductions in uncertainty after assimilating calibration data. We note that the posterior 

distribution for ψ is substantially shifted from the prior, indicating more phosphorus loss (i.e., 

settling and permanent burial) in upstream portions of the reservoir than expected and/or a bias 

in WRTDS loading estimates. Additionally, many tributaries (e.g., Morgan Creek, New Hope 

Creek, and Northeast Creek) also pass through wetlands and impoundments before entering the 

lake, which can contribute to TP removal. On the other hand, the burial rate, B, is quite small, 

indicating less permanent phosphorus removal within the deeper main body of the lake. In the 

main body of the lake, phosphorus appears to be efficiently recycled, as indicated by the 

relatively high R. 
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Figure 7: Comparison between prior (dashed) and posterior (solid) distributions for the TP 

model. The y-axis represents probability density. Prior distributions reflect knowledge gathered 

from previous studies. Posterior distributions represent calibrated parameters. 

The total phosphorus model shows an overall reduction in the water column concentration of 

phosphorus over the course of the 35 year study period (Figure 8). Water column concentrations 

drop by 50%, 29%, 26%, and 40% in segments 1 through 4, respectively, when comparing the 

first (1983-1992) and last (2009-2018) decades of the study period. Sediment concentrations 

increase during the first decade of study and then, starting from the early 1990s, they gradually 

decrease. Sediment concentrations drop by 8% when comparing the first and last decades. This 

concentration reduction is more prominent in segments 1 and 4, which are most exposed to the 

inflow of TP from the watershed than the innermost segments. The long term trend of sediment 

TP is important to note, as it will influence the rates of internal loading in the future (see section 

on scenario analysis). 

The majority of the phosphorus enters the lake from the watershed during the beginning of the 

period, but over time, the majority of the loading to the lake (i.e., water column) starts to come 

from internal recycling from the sediment layer in most years (Figure 8, top). This change in 

proportion is mostly due to reduced watershed TP loading and, to some extent, to increased 

sediment loading caused by an increase in sediment TP content in the beginning of the period. 

Years with higher inflow generally have higher loadings, especially in segment 4 (Figures 8 and 

9). Segment 4 has the strongest correlation between flushing rate and inflow, as expected due to 

the dominance of the Haw River.  
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Figure 8: In the Top plot, mass flow of Total Phosphorus for Jordan Lake overall is represented. 

In the bottom plot, total water column concentration of TP over the course of the entire period, as 

well as average areal concentration of TP in the sediments are shown. 

 

 



Jordan Lake Reservoir Model  December 2019 
 

23 
 

 

Figure 9: Average yearly flushing rate for individual segments using (left y-axis), calculated in 

terms of how many times that segment’s volume flowed through during the period. Also plotted 

is the total inflow to the reservoir (right y-axis). 

 

The reservoir demonstrates substantial intra-annual variability in TP gains and losses (Figure 

10). Internal loading is the primary contributor of TP during summer months, whereas watershed 

loading dominates during the winter. Higher settling rates occur during the summer, due to the 

temperature response parameters. External watershed loads and releases of nutrients through the 

dam follow the same pattern as inflow and flushing rates (Figure 11). 
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Figure 10: Top: Average monthly mass transfer rates for the lake as a whole. Bottom: Average 

monthly segment concentrations; dotted lines and empty symbols represent surface 

concentrations during stratified periods for segments 2-4. 

 

Figure 11: Average monthly flushing rate for individual segments, calculated in terms of how 

many times that segment’s volume flowed through during the period.  
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Total Nitrogen Model 

Overall, 41% of the variability of the TN data is explained by the model (Figure 12).  For 

individual segments of the lake the coefficient of determination is equal to 0.21, 0.40, 0.34, and 

0.53 for segments 1, 2, 3, and 4, respectively. The model generally captures temporal variability 

in TN concentrations well. However, for segment 1 (lowest R2), the model tends to over-predict 

TN concentrations in the 1990s (Figure 13). 

   

 

Figure 12: In-lake surface TN observations versus predictions (R2 = 0.41). 
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Figure 13: Monthly time series showing the TN model predictions along with monthly 

observations for segment 1. 

Estimated model parameters (Figure 14) generally fall within the ranges indicated by the prior 

distributions.  The relatively high effective settling rate and low first order transfer rate generally 

suggest that nutrient transfer to the sediment is better represented as a settling term.  Parameter B 

represents permanent burial and/or denitrification, which is estimated to be nearly zero, 

indicating denitrification is not a significant process within the main body (i.e., center) of the 

lake. The posterior distribution for ψ is substantially larger compared to the prior distribution, 

indicating nitrogen loss occurs before entering the main body of the lake and/or a bias in 

WRTDS loading estimates. The high ψ posterior distribution is likely explained as an initial 

settling of particulate matter due to water slowing down before it enters the body of the lake, a 

trend documented before (Jiao et. al. 2018). Also, as noted for phosphorus, many tributaries (e.g., 

Morgan Creek, New Hope Creek, and Northeast Creek) pass through wetlands and 

impoundments before entering the lake, which can contribute to burial and denitrification. At the 

same time, the ψ for the TN model is substantially lower than for the TP model, and together 

with the low B, partially explains why there is more accumulation of TN than TP in reservoir 

sediments over the study period.  
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In general, inferred TN and TP sediment rates (Figures 7 and 14) are at least qualitatively 

consistent with recent nutrient flux measurements (M. Piehler, personal communication, 2019).  

These flux measurements indicated the sediment nitrogen releases (primarily as ammonia) were 

about 40 times higher than phosphate releases, indicating that nitrogen is more efficiently 

recycled from the sediment than phosphorus. Also, measured releases of nitrogen gas, which 

indicate denitrification, were minimal except for at a location in the upstream Haw River portion 

of segment 4. This is consistent with the minimal estimate for B and substantially negative 

estimate of ψ, which also indicate that permanent nitrogen losses are largely limited to around 

the mouths of the tributaries.  Further comparisons with measured sediment nutrient 

concentrations and fluxes will be explored in the future. 

 

Figure 14: Comparison between prior (dashed) and posterior (solid) distributions for TN model. 

The y-axis represents probability density. Prior distributions reflect knowledge gathered during 

the literature review process. Posterior distributions represent calibrated parameters. 

There is a higher proportion of internal loading for TN (Figure 15) than for TP (Figure 8). Over 

1983-2018, internal loading contributes 71% and 53% of total loading for these two nutrients, 

respectively. There is also an accumulation of sediment TN over the course of the entire study 

period, while sediment TP begins to decline after the first decade. Also, where the TP model 

shows notable decreases in average water column concentration, the TN model shows minor 

increases of 1.7%, 6.8%, 1.4%, and 6.0% in segments 1 through 4, respectively, when comparing 

the last decade to the first decade of the study period (2009-18 vs. 1983-92). It is important to 

note that there was no substantial external watershed loading reductions in TN, unlike TP, which 
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explains part of the difference in water column concentration changes over the study period. 

Similarly, sediment TN concentrations increase by 20% over the same period. Segment 4 again 

shows the strongest relationship between higher loading on a yearly scale and higher inflow 

(Figures 15 and 9).  

 

  

Figure 15: In the top plot, mass flow of Total Nitrogen for Jordan Lake overall. In the bottom 

plot, total water column concentration of TN over the course of the entire period, as well as 

average areal concentration of TN in the sediments. 

Internal loading of TN is a substantial contributor during all months (Figure 16). Internal loading 

is only overtaken by watershed loading during the early months of the year when watershed 

loading is the highest, aligning with high inflow and flushing rates (Figure 11). There is a much 

greater difference in surface concentration relative to total water column concentration during the 

summer months in the segments 3 and 4, which reflect stratification behavior (Figure 16, 

bottom). This is consistent with the higher rates of internal loading of TN, as this will create 

greater differences between concentrations in the epilimnion versus the hypoliminion.  
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Figure 16: Top: Average monthly mass transfer rates for the lake as a whole. Bottom: Average 

monthly segment concentrations; dotted lines and empty symbols represent surface 

concentrations during stratified periods for segments 2-4. 
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Chlorophyll Model 

The chlorophyll regression model with three predictor variables explains about one third of the 

variability in daily chlorophyll for a given segment and season (see Figure 17 for examples of 

summer). However, when considering the entire dataset, the model is able to explain more than 

half of the observed variability (R2=0.59).  

For most of the 16 cases considered (4 seasons × 4 segments) we find that chlorophyll is 

positively related to in-lake nutrients (nitrogen or phosphorus, depending on which one is 

limiting) and temperature, whereas a mostly negative relationship is found with segment flushing 

rate (Table 6). This is consistent with previous literature, as higher temperatures and nutrients 

and low flushing are known to favor algal growth (Paerl and Otten, 2013). Interestingly, in some 

cases such as wintertime in segment 4, nutrients do not show significant positive relationships 

with nutrients. This implies that, in those conditions, variability in algal biomass is mainly 

controlled by hydrometeorology. 

The chlorophyll model also provides information on rnp, the total nitrogen to total phosphorus 

ratio (TN:TP) at which algae switch between nitrogen and phosphorus limitation. We find that, 

on average, rnp ≈ 16 provides the best fit to the data, although the exact best value varies by 

segment and season. In all cases except one (Table 6), the value of rnp is substantially higher than 

the Redfield ratio of 7.2, which indicates that a portion of the nitrogen pool is not easily usable 

by algae to stimulate growth. Interestingly, rnp = 16 is approximately equal to the median of the 

observed TN:TP, which suggests that in Jordan Lake nitrogen and phosphorus are limiting a 

similar fraction of the time. Additionally, for all segments, rnp reaches a minimum in summer, 

which suggests that in summer phosphorus is more limiting than nitrogen. Specifically, the 

model results indicate that about 80% of summer days experience some degree of phosphorus 

limitation. Consequently, summer is the season when the importance of phosphorus for 

controlling algal biomass is high, relative to other seasons and to nitrogen. Additionally, segment 

1 appears to be limited by phosphorus most frequently (about 90% of sampled summer days) 

whereas segment 4 is phosphorus limited the least (about 50% of sampled summer days). In 

general, however, results of chlorophyll model calibration highlight the importance of reducing 

both nitrogen and phosphorus in order to reduce algal biomass throughout the year and 

throughout the entire lake. 
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Figure 17: Observed vs predicted daily log-transformed chlorophyll concentration during 

summer (June-September). The diagonal lines represent the 1:1 line. The model captures 

reasonably well the daily variability in different portions of the lake using only three predictors 

or less. 

 

  



Jordan Lake Reservoir Model  December 2019 
 

32 
 

Table 6: maximum likelihood estimates of the regression model parameters calibrated to 

different segments (1 to 4) and seasons. Note that in cases where the nutrient term is not 

significantly positive the ratio rnp is not applicable. The units of the β coefficients are (from the 

first to the fourth row) log(μgchlorophyll/l) divided by: 1, log(μgphoshorus/l), log(1/mo), and log(°C).  

 1,winter 1,spring 1,summer 1,autumn 2,winter 2,spring 2,summer 2,autumn 

0  -0.72 0.58 -0.58 0.35 -0.14 -0.44 -3.69 0.70 

np  0.86 0.53 1.01 0.61 0.65 1.14 0.88 0.15 

f  -0.23 -0.11 0 -0.11 -0.06 0.01 0.05 -0.11 

t  0.72 0.06 0.22 0.18 0.54 0 2.60 0.43 

npr  16 14 5 12 24 18 11 21 

 

 3,winter 3,spring 3,summer 3,autumn 4,winter 4,spring 4,summer 4,autumn 

0  0.88 -0.12 -2.69 -1.22 1.05 1.23 -0.13 -0.41 

np  0 0.9 0.92 0.92 0 0 0.62 0.20 

f  -0.04 -0.10 -0.04 -0.06 -0.24 -0.28 -0.14 -0.11 

t  0.47 0 1.83 0.88 0.22 0.19 0.41 1.15 

npr  NA 20 13 17 NA NA 15 25 

 

Combining the chlorophyll model with the TP and TN models allows us to predict chlorophyll 

for each month rather than only when nutrient measurements are available (see Figure 18 for the 

example of segment 1). The combined model also enables us to analyze effects of changing 

riverine inputs (see next section). The model captures well the high chlorophyll events such as 

the one observed in July 1986 and enables us to reconstruct other probable algal blooms, such as 

the one of September 2002, which had not been monitored (Figure 18).  

The combined models provide robust chlorophyll prediction. We note that the stand-alone 

chlorophyll regression model was developed using actual nutrient observations, and that 

substitution of modeled nutrient values would be expected to degrade predicative performance. 

Still, for the entire dataset, the combined model explains a large fraction of the observed variance 

(R2=0.44). This testifies to the robustness of the underlying nutrient models and the overall 

modeling chain required to predict chlorophyll. 
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Figure 18: Monthly time series showing the output combined TN-TP-chlorophyll model along 

with monthly observations for segment 1.  
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Scenario Analysis 

The combined model is used to assess future response of the reservoir to a broad range of 

changes in riverine nutrient (TN and TP) inputs. Considering the case with nutrient loading 

persisting at approximately current levels, model results show that the decreasing trend of TP 

observable in Figure 8 is going to continue. For instance, after 20 years, average lacustrine 

concentrations are expected to be 5% lower than the recent historical average (59 μg/l for 1999-

2018). However, halving phosphorus loads would facilitate larger lake-wide TP concentration 

reductions both immediately (due to halved watershed contributions) and gradually (due to a 

progressive decrease in sediment loading), as shown in Figure 19 for segment 1. Considering the 

entire lake, a 50% reduction in incoming TP after 20 years would lead to lacustrine 

concentrations about 30% lower than in the historical period.  

Nitrogen is expected to behave somewhat differently than phosphorus. Under a scenario of no 

loading changes, in 2038 TN concentrations are expected to be 9% higher than the recent 

historical average of 948 μg/l. This increase in lacustrine concentrations is explainable with the 

continued gradual accumulation of nitrogen in the sediments (Figure 15), which also implies a 

gradual increase in internal N loading. Given this increasing internal input, halving external 

(watershed) inputs would lead to a less steep reduction in TN concentrations when compared to 

TP (cf. Figures 19 and 20). Specifically, for the entire lake, reducing external loads of 50% 

would lead, after 20 years, to TN concentrations only 15% lower than in the period 1999-2018. 
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Figure 19: Probabilistic time series of predicted phosphorus for the recent historical period and, 

separated by the dashed line, the first two decades of the projection period. In this example, 

riverine nutrient inputs from all watersheds are reduced of 50%. Prediction intervals incorporate 

the effect of model/data and hydrologic uncertainty. 
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Figure 20: Probabilistic time series of predicted nitrogen for the recent historical period and, 

separated by the dashed line, the first two decades of the projection period. In this example, 

riverine nutrient inputs from all watersheds are reduced of 50%. Prediction intervals incorporate 

the effect of model/data and hydrologic uncertainty. 

The interplay of opposite trends in nitrogen and phosphorus internal loads is largely going to 

balance out in terms of chlorophyll concentration. Specifically, if future riverine nutrient loads 

are maintained at recent historical levels, chlorophyll is expected to approximately remain at its 

historical mean (30 μg/l, annual) for the first decade. However, over a longer time horizon, 

chlorophyll is expected to decrease slightly (Table 7), due to a gradual depletion in sediment TP. 

Given this mild decreasing trend, changes in external loads of the same magnitude but opposite 

sign are going to lead to slightly asymmetric changes in chlorophyll concentration. For instance, 

a load change of +50% is only going to lead to a chlorophyll change of +11% after 20 years, 

compared to -15% with a -50% load change. 
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Table 7: Percentage of average changes in lake-wide chlorophyll concentration. The rows 

represent the loading scenarios, while the columns indicate time periods. The values in column 1 

indicate the percentage changes in loading for all watersheds, except for the last four rows which 

show the effect of modifying the loads only for the New Hope (NH) Arm or Haw River (HR) 

Arm. 

Loading 

adjustment 
Historical 2019 2028 2038 2058 

-100 0 -14 -23 -30 -41 

-75 0 -9 -17 -22 -30 

-50 0 -6 -12 -15 -21 

-25 0 -3 -6 -8 -12 

0 0 1 -1 -2 -4 

25 0 4 4 4 4 

50 0 7 9 11 12 

75 0 10 14 16 19 

100 0 13 18 22 27 

-50NH 0 -5 -10 -13 -19 

50NH 0 6 7 8 10 

-50HR 0 0 -2 -4 -7 

50HR 0 2 1 0 -2 

 

Changing loads in the New Hope (NH) Arm would have a much larger impact on lake-wide 

chlorophyll than changing loads in the Haw River (HR) Arm (Table 7), even though NH is only 

20% the size of the total (NH + HR) watershed and it only contributes roughly 20% of total 

incoming nutrients (see Watershed Modeling Report). Taking a 50% load reduction and a 20 

year horizon as an example, changes in NH loads are predicted to cause a chlorophyll change of -

13% whereas changes in HR loads would only lead to -4%. The higher impact of changes in NH 

loads can be explained by the following considerations. First, the main pool of segment 4 has 

lower chlorophyll (22 μg/l) compared to the lake average (30 μg/l) and segment 1 (46 μg/l). 

Therefore, chlorophyll changes in segment 4 will have a lower impact on overall lake 

chlorophyll compared to the same percentage change for segment 1. Additionally, in Tables 8 

and 9, it is evident that meaningful changes in segment-specific chlorophyll only occur when 

loads from directly contributing tributaries are reduced. For instance, changing NH loads by 

±50%, which have direct impacts on segments 1-3, will produce no significant change in 

segment 4. Finally, regression results (Table 6) show that chlorophyll in segment 4 is less 

sensitive to nutrient changes than chlorophyll in segment 1. As a result, for a -50% change in 

overall loading, after 20 years segment 1 will experience 21% lower chlorophyll (Table 8), 

whereas segment 4 chlorophyll will only be reduced by 9% (Table 9). Time series of chlorophyll 

predictions further illustrate these considerations. Specifically, Figure 21 shows that segment 1 

has both high chlorophyll and marked responsiveness to load reduction. Segment 4 (Figure 22), 
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on the other hand, has lower chlorophyll and a barely perceptible reduction in chlorophyll even 

after a 50% reduction in riverine loads. 

Table 8: Percentage of average changes in chlorophyll for segment 1. The rows represent the 

loading scenarios, while the columns indicate time periods. The values in column 1 indicate the 

percentage changes in loading for all watersheds, except for the last four rows which show the 

effect of modifying the loads only for the New Hope (NH) Arm or Haw River (HR) Arm. 

Loading 

adjustment 
Historical 2019 2028 2038 2058 

-100 0 -18 -33 -42 -55 

-75 0 -12 -24 -31 -41 

-50 0 -7 -16 -21 -28 

-25 0 -2 -8 -11 -16 

0 0 4 -1 -2 -5 

25 0 9 7 6 6 

50 0 13 13 15 16 

75 0 18 20 22 26 

100 0 22 26 31 36 

-50NH 0 -6 -16 -21 -28 

50NH 0 13 13 14 17 

-50HR 0 4 0 -3 -5 

50HR 0 4 -1 -2 -5 

 

Table 9: Percentage of average changes in chlorophyll for segment 4. The rows represent the 

loading scenarios, while the columns indicate time periods. The values in column 1 indicate the 

percentage changes in loading for all watersheds, except for the last four rows which show the 

effect of modifying the loads only for the New Hope (NH) Arm or Haw River (HR) Arm. 

Loading 

Adjustment 
Historical 2019 2028 2038 2058 

-100 0 -12 -18 -23 -30 

-75 0 -9 -13 -16 -19 

-50 0 -5 -8 -9 -11 

-25 0 -3 -3 -4 -5 

0 0 1 0 1 0 

25 0 3 4 4 5 

50 0 5 7 9 10 

75 0 8 10 12 14 

100 0 9 13 16 18 

-50NH 0 0 0 0 0 

50NH 0 0 0 1 1 

-50HR 0 -5 -7 -9 -11 

50HR 0 5 7 8 9 
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Figure 21: Probabilistic time series of predicted chlorophyll a in segment 1 for the recent 

historical period and, separated by the dashed line, the first two decades of the projection period. 

In this example, riverine nutrient inputs from all watersheds are reduced of 50%. Prediction 

intervals incorporate the effect of model/data and hydrologic uncertainty. 
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Figure 22: Probabilistic time series of predicted chlorophyll a in segment 4 for the recent 

historical period and, separated by the dashed line, the first two decades of the projection period. 

In this example, riverine nutrient inputs from all watersheds are reduced of 50%. Prediction 

intervals incorporate the effect of model/data and hydrologic uncertainty. 

Besides elucidating mean trends, the probabilistic model projections in this study take into 

account parameter, hydrologic, model structure, and observation uncertainty. Consequently, 

these projections enable us to quantify the probability of meeting the chlorophyll state criterion 

of 40 μg/l (NCDENR, 2007) for a variety of loading scenarios and temporal horizons. Results of 

these probabilistic analyses, reported in Table 10, are centered on segment 1, which is the portion 

of the lake with the highest chlorophyll concentrations (46 μg/l during the historical period). In 

general, Table 10 shows that substantial load reduction and multiple decades are necessary for 

segment 1 to consistently achieve chlorophyll concentrations below the criterion with high 

probability. For instance, with a 75% load reduction, it would take four decades to attain April-

October chlorophyll of 40 μg/l or lower with 86% confidence. For the same temporal horizon but 

only a 25% reduction, the state criterion would instead be exceeded with about 72% probability.  
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Table 10: Probability that mean April-October chlorophyll in segment 1 does not exceed the state 

criterion of 40 μg/l in any given year. The rows represent the loading scenarios, while the 

columns indicate time periods. The values in column 1 indicate the percentage changes in 

loading for all watersheds, except for the last four rows which show the effect of modifying the 

loads only for the New Hope Arm or the Haw River Arm. 

Loading 

Adjustment 
Historical 2019 2028 2038 2058 

-100 0.05 0.47 0.69 0.84 0.98 

-75 0.05 0.3 0.49 0.66 0.86 

-50 0.05 0.17 0.29 0.40 0.62 

-25 0.05 0.09 0.13 0.18 0.28 

0 0.05 0.04 0.06 0.09 0.12 

25 0.05 0.02 0.02 0.02 0.02 

50 0.05 0.00 0.01 0.01 0.00 

75 0.05 0.00 0.00 0.00 0.00 

100 0.05 0.00 0.00 0.00 0.00 

-50NH 0.05 0.17 0.30 0.39 0.64 

50NH 0.05 0.01 0.01 0.00 0.00 

-50HR 0.05 0.05 0.05 0.06 0.10 

50HR 0.05 0.04 0.04 0.09 0.10 
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Comparison to Previous Results 
 

The last major policy informing modeling project for Jordan Lake was performed by TetraTech 

(2003), based on a study period of 1997 to 2001. This study used the Water Analysis Simulation 

Program (WASP) for modeling water quality and the Environmental Fluid Dynamics Code 

(EFDC) for hydrodynamics. Although the model was calibrated to a shorter time period, it had 

higher spatio-temporal resolution, and represents eutrophication processes with increased 

mechanistic detail. However, there was no focus on long-term sediment nutrient dynamics or on 

probabilistic model calibration. Additionally, in our work we have done a more complete 

analysis of error and model performance relative to observed quantities. To compare between 

this study and our results, TetraTech model segments 1-4, 5-8, 9-13, and 14-15 map to segments 

1, 2, 3, and 4 of this study, respectively.  

TetraTech (2003) reported the required watershed reductions in TP and TN to reach a 10% or 

lower frequency of chlorophyll a concentrations above 40 μg/l during the “growing season” of 

May-September. Both our results (Table 8) and TetraTech confirm that Haw River reductions 

will have minimal influence on water quality in the highly eutrophic segment 1. Based on the 

TetraTech report, a 50% reduction of both TN and TP would instantaneously reduce the 

frequency of days with chlorophyll a above 40 μg/l to 10% or less in segment 1. From our own 

analysis, a 50% reduction in loading is expected to produce only a 17% chance of reducing the 

average April-October chlorophyll a concentration to below 40 μg/l at first.  However, after 40 

years of sustained 50% reductions, the probability would increase to 62% (Table 10). While the 

two studies assessed somewhat different improvement goals, both studies indicate that reducing 

external nutrient loading reductions can substantially improve water quality in the reservoir.  The 

primary difference is that our study indicates such improvements will likely take decades to fully 

realize. 
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