UNRBA Board Meeting February 20, 2013

Location: Butner Town Hall

Agenda

Introductions and Announcements

Approval of the January 16, 2013 Meeting Summary

Existing Development Rule Implementation Initiative Strategy Group Report: Status Piedmont Triad/Jordan—TREBIC Initiatives UNRBA Approach: Implementation Delay—Nutrient Credit Development DENR Contact Administrative Options Legislative Option Cardno ENTRIX Report on Cost/Timeline for Nutrient Credit Toolbox Budget Considerations

Future Monitoring Objectives—Path Forward Committee Activities and Recommendations

Agenda (Continued)

FY 2014 Funding Discussion

Base Dues and UNRBA Management: Personnel Committee Existing Development/Nutrient Credit Toolbox: Strategy Group Monitoring Program to Support Stage II Reexamination Process Path Forward Committee

Consideration of Fund Balance and Revenue Needed to Support UNRBA Objectives

> Treasurer's Report—Jimmy Clayton Fund Balance Revenue Requirements

Executive Director Report

Next Scheduled Board Meeting March 20, 2013

Closing Comments

Introductions and Announcements

Approval of January 16, 2013 Meeting Summary

Review of Draft Summary
 Comments and Corrections
 Board Vote

Treasurer's Report Jimmy Clayton

Upper Neuse River Basin Association, Inc.

Treasurer's Report

Date: 2/19/2013

Balance Forv	ward: (per bank statement - 12/27/12)	Checking Savings	\$	307,547.02 113,054.77
Debits:	McGill Associates (services thru December, 2012) Cardno (November & December invoices)		\$ \$	9,997.90 35,169.69
	Bank Charges (maintenance fees)			1.00
	Total Debits		\$	45,168.59
Credits:	Interest (checking)		\$	36.82
	Interest (savings)		\$	24.78
Account Bala	ance (per bank statement -1/28/13)	Checking Savings	\$	262,415.25 113,079.55
	Total UNRBA Account Balance :		\$	375,494.80
Outstandin	g invoices/deposits in process since the close o	f bank statem	ent (1/2	28/13):
Debits:	Cardno (January 13 invoice) McGill Asso. (January, 13 invoice)		\$	15,537.50 14,685.06
	Current Account Balances:	Checking Savings	\$	232,192.69 113,079.55
	Total UNRBA Account Balance :		\$	345,272.24

Anticipated UNRBA Expenditures for FY 2012 - 13

Date: 2/19/13

Cardno-Entrix Contract Amount -	\$	205,240.00	***	
Paid in FY 2011-12 Paid in FY 2012-13	\$ 36,578.75 108,801.12 Balance on (Contract:	\$	59,860.13
McGill Asso. Contract Amount -	\$	120,000.00		
Paid in FY 2012-13	\$ 69,577.12 Balance on (Contract:	\$	50,422.88
Reimbursables and other expenses:			\$	3,500.00
Total Projected Expenditures to	6/30/13:		\$	113,783.01
Current Account Balance as of 2/19/13: Less projected expenditures for	FY 2012-13:	Checking	\$	232,192.69 113,783.01
Projected Checking Account Bala	ance on 6/30/13:		\$	118, <mark>4</mark> 09.68
Current Saving Account Balance	:		\$	113,079.55

*** Cardno's contract increased by \$8,000 (Board approved for additional report)

Existing Development Rule Implementation Initiative

Strategy Group Report:

- Status Piedmont Triad/Jordan—TREBIC Initiatives
- UNRBA Approach: Implementation Delay—Nutrient Credit Development
- DENR Contact
- Administrative Options
- Legislative Option
- Cardno ENTRIX Report on Cost/Timeline for Nutrient Credit Toolbox
- Budget Considerations

Falls Lake Schedule Considerations

- Inventory of potential reduction opportunities within their jurisdictions, January 2013.
- DWQ Develop Jurisdictional Loads (JLs) for each affected local government within the Falls Lake Watershed for EMC approval, July 2013
- DWQ must develop a "Model Program" (MP) as a framework for meeting these JLs and submit the MP to the EMC for approval, July 2013.
- Governments are required submit to DWQ for review and <u>preliminary</u> approval nutrient reduction programs, January 2014 (six months following EMC approval of the MP—if the EMC acts in July 2013)
- Implementation of the programs must begin at the time of submittal and prior to preliminary or final approval.
- Implementation of the Existing Development requirements for Stage I is scheduled to occur over the period between 2014 and 2021.
- The "deadline" for meeting the Stage I Existing Development JLs is 2021, seven years following the implementation start date.

Technical Considerations

- The ability of DWQ to develop acceptable JDs for the jurisdictions in the established timeframe,
- 2. The lack of a comprehensive list of nutrient reduction practices that would provide realistic and acceptable nutrient credits for the development of a flexible and effective MP for use by the local governments,
- 3. DWQ's limited resources (including the Nutrient Scientific Advisory Board) to provide a comprehensive package of nutrient reduction practices,
- 4. The lack of alternatives stemming from items 1 and 2 for the development of local programs required in January 2014, and
- 5. The inconsistent local program approval schedules.

Provisions of a UNRBA Initiative

- I. Through administrative action or legislative change seek modification to the implementation schedule that delays implementation of the Stage I Existing Development Rule by at least 18 months
- 2. Work with DENR/Legislature to achieve this schedule revision and to identify specific resources and funding to secure the development of a more complete list of approved nutrient reduction practices and credits for use in the development of local programs
- 3. Seek State funding for the credits development process but provide funding within the FY 2014 budget to support the development of an expanded nutrient reduction practices and credits framework

UNRBA Status Update February 2013

Alix Matos Lauren Elmore

February 20, 2013

Agenda

Project status update

•Discuss development of a nutrient credit accounting tool for the Falls Lake Watershed

- Options
- Costs

Task	Description	Percent Complete
1	Develop Framework for a Re-Examination of Stage II of the Falls Nutrient Strategy	70%
2	Review Existing Data and Reports to Summarize Knowledge of Falls Lake and the Falls Lake Watershed	100%
3	Review Methods for Delivered and Jurisdictional Nutrient Loads	100%
4	Recommendations for Future Monitoring and Modeling	98%
5	Compile Final Report	68%
New	Develop Approach for Development of Nutrient Accounting Tool	95%

Status Update

•Task 1 - Stage II Re-examination Framework

- Spreadsheet tool links nutrient reduction with designated uses
- Barnes and Thornburg Lawyer, Susan Bodine, is reviewing reports and drafting recommendations
- Discuss with NCDWQ monitoring and modeling needs and Stage II re-examination options
- TM1 annotated outline to PFC in February
- Draft Task 1 TM in mid March
- Final Task 1 TM in mid April

•Task 2 - Summary of Existing Data and Reports

• Task 2 TM – Finalized

Status Update, Continued

Task 3 -Tributary and Jurisdictional Load Estimation Methods

• Task 3 TM – Finalized

•Task 4 (Future Monitoring and Modeling)

- Submitted Final Draft Task 4 TM to PFC
- PFC will submit a copy to NCDWQ
- Cardno ENTRIX will finalize pending input from NCDWQ

Additional Task

- Submitted a report to the PFC regarding the potential to develop a nutrient credit accounting tool for the Falls Lake Watershed
- Will finalize report after receiving PFC comments

Objectives for Developing Nutrient Credit Accounting Tool

- •Develop nutrient credits for BMPs without accounting procedures
- •Reduce implementation costs for the UNRBA
- •Continue to improve water quality in Falls Lake
- •Provide UNRBA with a more complete "tool box" for implementing Stage 1 (January 2014)

Issues Facing the Regulated Community

•Falls Lake Nutrient Management Strategy

- Does not account for delivery factors in the watershed
- Does not provide nutrient credit accounting for many potentially cost effective BMPs
- Requires implementation of Stage I before credit accounting procedures are in place for many BMPs

•Very high implementation costs for Stage I and Stage II

- Approximately \$30 million per year for local governments to reduce nutrient loading from existing development
- Approximately \$20 million per year for WWTPs to upgrade facilities

Main Tasks for Developing a Nutrient Credit Accounting Tool

- Multiple options presented for each task
- •Select one option from each task
 - Task 1 Build a database of BMP nutrient removal effectiveness
 - 1A Single Program
 - IB Extended Research
 - IC Account for Uncertainty in BMP Performance
 - Task 2 Develop a spreadsheet based tool that includes costs
 - 2A Assume Delivery Factors of 1
 - 2B Account for Nutrient Retention in Large Watershed Impoundments
 - 2C Account for Nutrient Trapping in Subwatersheds, Streams, and Impoundments
 - 2D Build Tool in an Interactive GIS Interface

Task 1 – Build a BMP Database

Compile comparable nitrogen and phosphorus removal efficiencies
Compile costs (capital, operation and maintenance, convert to consistent cost basis)

- •Focus on BMPs that do not have accounting procedures in place or are not included in the PTRC study
- •Evaluate applicability for the Falls Lake Watershed

•Three options for developing Task 1

- Vary by extent of the research effort and analysis of the data
- Provide flexibility for the UNRBA in how the tool is developed
- Costs ranges include meetings and negotiation with NCDWQ as well as project documentation

Task 1 – Build a BMP database

•Option 1A – Single Program

- Compile data from a single program (e.g., Chesapeake Bay)
- May limit number of BMPs available for consideration
- Would rely on single values for nitrogen and phosphorus removal efficiencies
- May raise questions as to applicability to local watershed
- Potential costs: \$20,000 to \$40,000
- Range in costs due to discussion and negotiation with NCDWQ

Task 1 – Build a BMP database

•Option 1B – Extended Research

- Extend research effort to include several information sources
- Identify representative summary statistics to represent the nitrogen and phosphorus removal efficiencies (e.g., median, average)
- Improves on Option 1A with additional data
- Does not account for the variability in nutrient reductions often observed for a particular BMP
- Potential costs: \$75,000 to \$125,000

Task 1 – Build a BMP database

•Option 1C – Account for Uncertainty in BMP Performance

- Builds upon database compiled for Option 1B
- Analyze distribution of reported nutrient removal efficiences
- Incorporate information about uncertainty and variability into the assignment of nutrient credits
- Allows the UNRBA to encourage use of BMPs with consistent performance
- Potential costs: \$125,000 to \$175,000

Calculate baseline nutrient loads

 Calculate nutrient credits associated with BMPs included in Task 1 assessment

•Account for drainage area, land use, geology, and BMP type

•Three options for developing Task 2

- Vary by how location in the watershed is considered
- Provide flexibility for the UNRBA in how the tool is developed
- Costs ranges include meetings and negotiation with NCDWQ as well as project documentation

•Option 2A – Assume Delivery Factors of 1

- Use field scale areal loading rates consistent with Rules
- Apply scaling factor for geology based on NC Forest Service study
- Create lookup tables in spreadsheet tool to generate baseline nutrient loads
- Use BMP nutrient removal efficiencies from Task 1 to calculate credits
- Baseline loads and credits would not depend on location in the watershed
- Potential costs: \$20,000 to \$40,000

•Option 2B – Account for Nutrient Retention in Large Watershed Impoundments

- Builds on Option 2A
- Account for nutrient trapping in seven watershed impoundments using empirical formulas
- Assign baseline loads and nutrient credits based on location relative to these impoundments (e.g., upstream or downstream of Lake Michie)
- Allows for a more efficient implementation strategy
- Potential costs: \$40,000 to \$80,000

•Option 2C – Account for Nutrient Trapping in Subwatersheds, Streams, and Impoundments

- Builds on work conducted for Option 2B
- Develop a watershed model to generate delivery factors that account for nutrient trapping and uptake in subwatersheds, streams, and impoundments
- Reduce overall costs of implementation
- Potential costs: \$175,000 to \$300,000
- Range in costs due to
 - Level of effort associated with selected watershed model
 - Spatial resolution of delivery factors

•Option 2D – Build Tool in an Interactive GIS Interface

- Links nutrient credit accounting tool developed under Option 2C to a GIS user interface
- Allows user to
 - Highlight area of interest
 - Select from list of appropriate BMPs
 - Fill out a user input form (area draining to BMP, etc.)
- Predicts nutrient credits and cost ranges based on user input
- May be used to track implementation spatially and facilitate nutrient trading
- Potential costs: \$225,000 to \$350,000

Main Tasks for Developing a Nutrient Credit Accounting Tool

- Multiple options presented for each task
- •Select one option from each task
 - Task 1 Build a database of BMP nutrient removal effectiveness
 - 1A Single Program
 - IB Extended Research
 - IC Account for Uncertainty in BMP Performance
 - Task 2 Develop a spreadsheet based tool that includes costs
 - 2A Assume Delivery Factors of 1
 - 2B Account for Nutrient Retention in Large Watershed Impoundments
 - 2C Account for Nutrient Trapping in Subwatersheds, Streams, and Impoundments
 - 2D Build Tool in an Interactive GIS Interface

Summary of Options for Developing Nutrient Credit Tool

Tasks Options	2A	2B	2C	2D
1A	2 to 4 months	2 to 4 months	8 to 12 months	8 to 12 months
	\$40,000 - \$80,000	\$60,000 - \$120,000	\$195,000 - \$340,000	\$245,000 - \$390,000
1B	5 to 8 months	5 to 8 months	8 to 12 months	8 to 12 months
	\$95,000 - \$165,000	\$115,000 - \$205,000	\$250,000 - \$425,000	\$300,000 - \$475,000
1C	7 to 12 months	7 to 12 months	8 to 12 months	8 to 12 months
	\$145,000 - \$215,000	\$165,000 - \$255,000	\$300,000 - \$475,000 ¹	\$350,000 - \$525,000

¹ Recommended Approach

Recommended Option 1C/2C package

- Accounts for spatial variability in delivered nutrient loads
- Allows local governments to optimize BMP placement in the watershed
- Supports nutrient trading
- •Potential to significantly reduce implementation costs
- •Watershed model also provides ability to:
 - Estimate jurisdictional loads
 - Simulates nutrient trapping in impoundments, streams, and subwatersheds

Future Monitoring Objectives—Path Forward Committee Activities and Recommendations

Path Forward Committee Update

Michelle Woolfolk February 20, 2013

Durham – Where Great Things Happen

www.durhamnc.gov

Very busy month...

- Path Forward Conference Call, January 24th, to review the Task 4 Technical Memorandum
- RFQ Subcommittee Meeting, January 31
- Path Forward Meeting, February 4th, to discuss monitoring goals and costs
- Path Forward Meeting, February 18th, to discuss monitoring goals and costs

The Path Forward: Increasing the Effectiveness of the UNRBA in the era of the Falls Lake Rules

Providing a public forum to review and discuss innovative approaches to restore, protect & maintain water quality

Collaboration in the Era of the Falls Lake Rules A robust and innovative trading program with a transparent and accessible system for recording and maintaining nutrient offsets and credits. [Consensus Principles #11, Session Law 2010_1555]

Technical assistance for all jurisdictions. Service needs will vary based on the jurisdiction size and existing programs.

A re-examination of the nutrient management strategy that answers key questions about the impacts of reductions and the feasibility of Stage II. [Consensus Principles #9, 15A NCAC 02B.0275(5)]

The Path Forward: Increasing the Effectiveness of the UNRBA in the era of the Falls Lake Rules

Step 1. Determine what monitoring and advanced technical analyses are needed to re-examine the nutrient management strategy.

> Step 2. Execute the field monitoring effort and perform needed technical analyses to support the re-examination.

> > Step 3. Evaluate current, and potential future, regulatory programs to manage upper and lower Falls Lake for recreational, fishing, drinking water, and other uses.

Task 1. Develop a framework that addresses the technical, legal/regulatory and political needs to successfully accomplish a re-examination of Stage II

11/16/2009 10:20

How do we get there, from here? What are the UNRBA's options? **Task 2.** Review Existing Data and Reports to Summarize Knowledge of Falls Lake and the Falls Lake Watershed

Task 3. Review Methods for Delivered and Jurisdictional Nutrient Loads

Task 4. Provide Recommendations for Future Monitoring and Modeling

07/27/2009 08:47

Objectives (Table 1-1, Handout)

- A. Source/Jurisdictional Loading
- B. Lake Response Modeling
- C. Compliance Monitoring
- D. Linkage of Water Quality to Designated Uses
- E. Credit Estimation for non-Conventional BMPs
- F. Support of Regulatory Options

rable 1-1 Objectives for Potential Monitoring and I	modenng	ງ ວເບບ	les lo	ппе г	ans L	ake vv	au
Study	Source/ Jurisdictional Loading	Lake Response Modeling	Compliance Monitoring	Linkage of Water Quality to Designated Uses	Credit Estimation for non-Conventional BMPs	Support of Regulatory Options	
Jurisdictional monitoring	Х		Х				
Areal loading rates	Х						
Internal Lake Loading	X	х				х	
Nutrient Fate and Transport	Х					Х	
Lake bathymetry and flow data		Х				Х	
Tributary monitoring		Х	Х				
Storm event sampling		Х					
In-lake processes		Х				Х	
Lag time			Х			Х	
BMP implementation tracking	Х		Х				
Diurnal pH and DO monitoring with water quality sampling				Х		Х	
Fish monitoring with water quality sampling				Х		X	

Table 1-1 Objectives for Potential Monitoring and Modeling Studies for the Falls Lake Watershed

Table 1-2 Summaries of Potential Monitoring and Modeling Studies for the Falls Lake Watershed

Study	Number of Locations	Sampling Duration	Sampling Frequency	Estimated Costs	Period
Streambank erosion and nutrient loading – scoping level assessment	10	One event	One event	\$20,000	0-5
Lake bathymetry	Multiple transects	One event	One event	\$25,000	0-5
Inlake processes	12	One study	One study	\$25,000 b	0-5
Areal loading rates (literature review)	Literature review	One study	One study	\$25,000	0-5
Terrestrial and avian species monitoring	Variable	One study	One study	\$25,000	0-5
Recreational data and water quality sampling	6	Three years	Quarterly	\$60,000 per year	0-5
Event based water quality sampling	10	Three years	Assume twice per year	\$65,000 per year	0-5
Diurnal pH and DO monitoring with water quality sampling	7	Three years	Quarterly	\$70,000 per year	0-5
Aquatic species monitoring with water quality sampling	10	Three years	Quarterly	\$90,000 per year	0-5
Storm event monitoring	10	Three years	Once per season	\$120,000 per year	0-5
Estimation of loading from onsite wastewater treatment systems	20	Three years	Monthly	\$120,000 per year	0-5
Internal Lake Loading	12	One study	One study	\$180,000 ^b	0-5
Lake flow and water quality	2	Three years	Monthly	\$35,000 per year	0-5,

First Recommendation

Monitoring should occur for a minimum of 48 months (i.e., 4 years). A 12 month contingency should be considered in case of poor weather conditions.

Dam elevation: 243.98 ft 10/08/2007 10:45

The Andrewski and the second s

Dam elevation: 243.22 ft

in alle

1500

Second Recommendation

Prioritize objectives in the following order:

- 1. Lake Response Modeling
- 2. Support of Regulatory Options
- 3. Source/Jurisdictional Loading

Table 1-1 Objectives for Potential Monitoring and	Modeling	j Stud	les to	r the F	alls La	ake vv
Study	Source/ Jurisdictional Loading	Lake Response 🔒 Modeling		Linkag	Credit Manual BMPs	Support of Regulatory Options
Jurisdictional monitoring	X		Х			
Areal loading rates	X					
Internal Lake Loading	х	Х				Х
Nutrient Fate and Transport	Х					Х
Lake bathymetry and flow data		Х				Х
Tributary monitoring		Х	Х			
Storm event sampling		Х				
In-lake processes		Х				Х
Lag time			Х			Х
BMP implementation tracking	X		Х			
Diurnal pH and DO monitoring with water quality sampling				Х		Х
Fish monitoring with water quality sampling				X		Х

Table 1-1 Objectives for Potential Monitoring and Modeling Studies for the Falls Lake Watershed

Third Recommendation

Budget for all studies listed under the top two priorities, Lake Response Modeling and Support of Regulatory Options

Assuming 4 years of monitoring, \$4.2 to 4.4 million estimated costs

FY 2014 Funding Discussion

Base Dues and UNRBA Management: **Personnel Committee** Existing Development/Nutrient Credit **Toolbox:** Strategy Group Monitoring Program to Support Stage II **Reexamination Process: Path Forward Committee**

UNRBA Revenue Summary FY 2013 - 14

Date: 2/19/13

Member	Membership Dues	Monitoring Assessment	Total Amount Due	FY 2012-13 Membership
	FY 2013-14	FY 2013-14	FY 2013-14	Dues Paid
Town of Butner	\$ 2,054.55	\$ 7,158.72	\$ 9,213.27	\$ 3,838.00
City of Creedmoor	1,387.01	4,832.80	6,219.81	2,614.00
City of Durham	33,392.50	116,350.17	149,742.67	59,616.00
Durham County	12,776.99	44,519.12	57,296.11	23,091.00
Franklin County	1,64 <mark>1</mark> .66	5,720.07	7,361.73	3,096.00
Granville County	9,429.83	32,856.55	42,286.38	17,105.00
Town of Hillsborough	2,558.02	8,912.96	11,470.98	4,670.00
Orange County	15,240.00	53,101.06	68,341.06	27,578.00
Person County	10,496.73	36,573.97	47,070.70	18,996.00
City of Raleigh	39,976.49	139,290.92	179,267.41	72,550.00
SGWASA	4,068.28	1 <mark>4,175.1</mark> 8	18,24 <mark>3.4</mark> 6	7,811.00
Town of Stem	1,084.05	3,777.19	4,861.24	2,095.00
Wake County	8,278.44	28,844.74	37,123.18	14,170.00
Town of Wake Forest	1,115.44	3,886.57	5,002.01	2,151.00
Total	\$ 143,499.99	\$ 500,000.02	\$ 643,500.01	\$ 259,381.00

Executive Director Report

Meeting Schedule

Next Scheduled Meeting, March 20, 2013

Closing Comments